Total Page - 11

2019

B.Sc.

2nd Semester Examination MATHEMATICS (Honours)

Paper - C4T

Full Marks: 60

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Unit - I

[Marks - 22]

1. Answer any one question:

1×2

- (a) Show that $\frac{dy}{dx} = 3y^{\frac{2}{3}}$, y(0) = 0 has more than one solution and indicate the possible reason.
- (b) Let $W(y_1, y_2)$ be the Wrongkian of two linearly independent solutions y_1 and y_2 of the

[Turn Over]

equation $\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$ then prove that

$$W(y_1, y_2)P(x) = y_2 \frac{d^2 y_1}{dx^2} - y_1 \frac{d^2 y_2}{dx^2}.$$

2. Answer any two questions:

5×2

(a) Let r_1 , r_2 be the roots of the indicial polynomial for the equation

 $\frac{d^2y}{dx^2} + \frac{ady}{dx} + by = 0 \text{ where } a, b \text{ are constants.}$ If $r_1 \neq r_2$ then show that two independent solutions are e^{r_1x} and e^{r_2x} respectively.

(b) Solve the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = x + e^x \sin x$$

by the method of underservine coefficient. 5

(c) Solve the differential equation

$$(2+3x)\frac{d^2y}{dx^2} + 5(2+3x)\frac{dy}{dx} - 3y = x^2 + x + 1,$$

$$-\frac{2}{3} < x < \alpha.$$

3. Answer any one equation:

10×1

(a) (i) A 2nd order linear differential equation of the form $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = F(x)$, where

P, Q and F are continuous functions of x on [a, b]. Then by using the method of variation of parameters prove that the general solution of given ODE is given by

$$y(x) = Au(x) + Bv(x) \left\{ -\int_{-\infty}^{\infty} \frac{V(t)F(t)}{W(u,v)} dt \right\} u(x) +$$

$$\left\{\int_{W(u, v)}^{x} \frac{u(t)F(t)}{W(u, v)} dt\right\} V(x), x \in [a, b]$$

[Turn Over]

where A and B are two arbitrary constants and W(u, v) = uv' - vu'.

(ii) Solve the differential equation

$$\frac{d^2y}{dx^2} + a^2y = \sec(ax)$$
 by the method of variation of parameters. 5

(b) (i) State and prove the super position principle for homogeneous linear differential equation.

4

- (ii) Using the fact that $y = x^2$ is a solution of the equation $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0$, $0 < x < \infty$ then find another independent solution.
 - (iii) If $y = x \cos x$ is a solution of an n-th order linear differential equation

$$\frac{d_y^n}{dx^n} + a_1 \frac{d_y^{x-1}}{dx^{n-1}} + \dots + a_{n-1} \frac{dy}{dx} + a_n y = 0$$

with real constant coefficients, then find the least possible value of n.

(5)

Unit - II

[Marks - 13]

4. Answer any four questions:

 2×4

(a) Show that

$$(yz + xyz)dx + (xy + xyz)dz + (zx + xyz)dy = 0$$
is integrable.

- (b) Let $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ be a solution of the system of equations $\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ a & b \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$. where $a, b \in R$ Then prove that every solution $y(x) \to 0$ as $x \to \infty$ if a < 0 and b < 0.
- (c) Show that $f(t,x) = (3t+2x_1, x_1-x_2)$ on $S:\{|t|<\infty, ||x||<\infty\}$ satisfying a Lipschitz condition where $x=(x_1, x_2) \in \mathbb{R}^2$.

(d) Find the first order simultaneous differential equations for the third order differential equation

$$\frac{d^3x}{dt^3} - 6\frac{d^2x}{dt^2} + 12\frac{dx}{dt} - 8x = 18e^{2t}.$$

(e) Solve:
$$\frac{dx}{3y - 2z} = \frac{dy}{z - 3x} = \frac{dz}{2x - y}$$
.

(f) Write fundamental matrix for homogeneous system of linear equation given below

$$\dot{X}(t) = A(t)X(t)$$
 where

$$X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}, t \in [a, b].$$

5. Answer any one question:

5×1=5

(a) Find the fundamental matrix and the solution

$$X(t)$$
 such that $X(0) = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$ for the system

$$\begin{pmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

(b) (i) Solve:

$$\frac{dx}{x^{2}(y-z)} = \frac{dy}{y^{2}(z-x)} = \frac{dz}{z^{2}(x-y)}$$
 2½

(ii) Solve:

$$(yz+2x)dx+(zx-2z)dy+(xy-2y)dz=0$$

2½

Unit - III

[Marks - 9]

6. Answer any two questions:

- 2×2
- (a) Find the equilibrium point of the system of differential equations

$$\dot{x} = e^{x-1} - 1 \text{ and } \dot{y} = ye^x.$$

(b) Show that x = 0 is the regular singular point of the differential equation

$$2x^{2}\frac{d^{2}y}{dx^{2}} + 7x(x+1)\frac{dy}{dx} - 3y = 0$$

- (c) If $\sum_{m=0}^{\infty} c_m x^{r+m}$ is assumed to be a solution of
 - $x^2y'' xy' 3(1+x^2)y = 0$ then find the values of r.
- 7. Answer any one question:

5×1

(a) Find a power series solution of the equation

$$\left(x^2 - 1\right)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + xy = 0.$$

Given that y(0) = 4 and $\frac{dy}{dx}\Big|_{x=0} = 6$.

(b) (i) Find the phase curve of the dynamical system of equations $\dot{x} = 2x - y$ and $\dot{y} = -4y$. Also describe the nature of stationary point.

(ii) Determine the steady state and their stability of the differential equation $\frac{dx}{dt} = x^2 - 5x + 6$. 3+2=5

Unit - IV

[Marks - 16]

8. Answer any three questions:

 2×3

- (a) If the vector \vec{a} and \vec{c} are perpendicular to each other then show that the vectors
 - $\vec{a} \times (\vec{b} \times \vec{c})$ and $(\vec{a} \times \vec{b}) \times \vec{c}$ are perpendicular to each other.
- (b) Find the value of x such that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} \hat{k}$ and $x\hat{i} 4\hat{j} + 5\hat{k}$ are Coplanar.
- (c) If $\vec{a} = t^2 \hat{i} t \hat{j} + (2t+1)\hat{k}$ and

 $\vec{b} = (2t-3)\hat{i} + \hat{j} - t\hat{k}$ then show that

$$\frac{d}{dt}(\vec{a}.\vec{b}) = -6$$
 at $t = 1$.

(d) Evaluate

$$\int_{0}^{1} \left(\vec{r} \times \frac{d^2 \vec{r}}{dt^2} \right) dt \text{ where } \vec{r} = t^3 \hat{i} + 2t^2 \hat{j} + 3t \hat{k}.$$

- (e) A necessary condition for the vector $\vec{c}(t)$ to be constant is $\frac{d\vec{c}}{dt} = \vec{0}$. Prove it.
- 9. Answer any one question:

10×1

- (a) (i) A necessary and sufficient condition that a proper vector \vec{u} has a constant length is that $\vec{u} \cdot \frac{d\vec{u}}{dt} = 0$.
 - (ii) If $\frac{d\vec{a}}{dt} = \vec{r} \times \vec{a}$ and $\frac{d\vec{b}}{dt} = \vec{r} \times \vec{b}$ then show that $\frac{d}{dt} (\vec{a} \times \vec{b}) = \vec{r} \times (\vec{a} \times \vec{b})$ where \vec{r} is a constant vector and \vec{a} , \vec{b} are vector functions of a scalar variable t.
- (b) (i) Four points whose position vectors are \vec{a} , \vec{b} , \vec{c} , \vec{d} are Coplanar if and only if

$$\left[\vec{a} \ \vec{b} \ \vec{c} \ \right] = \left[\vec{b} \ \vec{c} \ \vec{d} \ \right] + \left[\vec{c} \ \vec{a} \ \vec{d} \ \right] + \left[\vec{a} \ \vec{b} \ \vec{d} \ \right]$$

(ii) If
$$\frac{d^2\vec{r}}{dt^2} = 6t\hat{i} - 24t^2\hat{j} + 4\sin t\hat{k}$$
 and if $\vec{r} = 2\hat{i} + \hat{j}$ and $\frac{d\vec{r}}{dt} = -\hat{i} - 3\hat{k}$ when $t = 0$, then show that

$$\vec{r} = (t^3 - t + 2)\hat{i} + (1 - 2t^4)\hat{j} + (t - 4\sin t)\hat{k}$$
.